A bijective proof of Cassini's Fibonacci identity

نویسندگان

  • M. Werman
  • Doron Zeilberger
چکیده

can be easily proved by either induction, Binet's formula, or ([1, p. 80]) by taking determinants in In this paper we give a bijective proof, based upon the following combinatorial interpretation of the Fibonacci numbers. Proof of (1). Let e = (2,..., 2); define the bijection ~r: A(n)×A(n)\(e, e)-~ A(n-1) ×A(n + 1)\(e,e) as follows. Let [bs)]eA(n) × A(n) and look for the first 1 in Case I. The first 1 is an ak. Delete ak = 1 from the first vector and insert it between bk-1 and bk in the second vector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bijective Proofs of Vajda’s Ninetieth Fibonacci Number Identity and Related Identities

This article provides the first bijective proof for a previously “uncounted” Fibonacci number identity of Vajda. Bijections on similar sets that illustrate a related family of Fibonacci number identities are also considered.

متن کامل

A bijective proof of Riordan's theorem on powers of Fibonacci numbers

Let Fk(x) = ∞ ∑ n=0 F k nx . Using the interpretation of Fibonacci numbers in the terms of Morse codes, we give a bijective proof of Riordan’s formula (1− Lkx+ (−1)x)Fk(x) = 1 + kx bk/2c ∑ j=1 (−1) j akjFk−2j((−1)x), where Lk = Fk + Fk−2, and akj is defined by means of (1− x− x2)−j = ∞ ∑

متن کامل

Transforming Inductive Proofs to Bijective Proofs

is not obvious as a relation among the integers, but has a natural bijective explanation. Namely, let Sk be the set of k-subsets of [n]. (Here, [n] denotes the set of positive integers less than or equal to n.) Then |Sk| = n! k!(n−k)! , so the left side of the identity is ∑n k=0 |Sk|. Since the sets Sk are disjoint, this is equal to | ⋃n k=0 Sk| = |P([n])| = 2 , which completes the proof. Of co...

متن کامل

Compositions, Partitions, and Fibonacci Numbers

A bijective proof is given for the following theorem: the number of compositions of n into odd parts equals the number of compositions of n + 1 into parts greater than one. Some commentary about the history of partitions and compositions is provided.

متن کامل

A Combinatorial Proof of a Symmetric q-Pfaff-Saalschütz Identity

We give a bijective proof of a symmetric q-identity on 4φ3 series, which is a symmetric generalization of the famous q-Pfaff-Saalschütz identity. An elementary proof of this identity is also given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 58  شماره 

صفحات  -

تاریخ انتشار 1986